1. ∑nj=1j⋅2j
错位相减:
Sn=2Sn=1⋅21+2⋅22+…+1⋅21+…+n⋅2n(n−1)⋅2n+n⋅2n+1
所以有,Sn−2Sn⇒Sn=(n−1)⋅2n+1+2
举一反三:∑nj=1j2j
其实是将 2j 换成了 2−j,那么进行错位相减时,就是乘以 2−1 了,
Sn=Sn2=1⋅2−1+2⋅2−2+…+n⋅2−n1⋅2−2+…+(n−1)⋅2−n+n⋅2−n−1
相减得:Sn=2−2+n2n